The E3 ubiquitin ligase Ro52 negatively regulates IFN-β production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3

R Higgs, JN Gabhann, NB Larbi, EP Breen… - The Journal of …, 2008 - journals.aai.org
R Higgs, JN Gabhann, NB Larbi, EP Breen, KA Fitzgerald, CA Jefferies
The Journal of Immunology, 2008journals.aai.org
Induction of type I IFNs is a fundamental cellular response to both viral and bacterial
infection. The role of the transcription factor IRF3 is well established in driving this process.
However, equally as important are cellular mechanisms for turning off type I IFN production
to limit this response. In this respect, IRF3 has previously been shown to be targeted for
ubiquitin-mediated degradation postviral detection to turn off the IFN-β response. In this
study, we provide evidence that the E3 ligase Ro52 (TRIM21) targets IRF3 for degradation …
Abstract
Induction of type I IFNs is a fundamental cellular response to both viral and bacterial infection. The role of the transcription factor IRF3 is well established in driving this process. However, equally as important are cellular mechanisms for turning off type I IFN production to limit this response. In this respect, IRF3 has previously been shown to be targeted for ubiquitin-mediated degradation postviral detection to turn off the IFN-β response. In this study, we provide evidence that the E3 ligase Ro52 (TRIM21) targets IRF3 for degradation post-pathogen recognition receptor activation. We demonstrate that Ro52 interacts with IRF3 via its C-terminal SPRY domain, resulting in the polyubiquitination and proteasomal degradation of the transcription factor. Ro52-mediated IRF3 degradation significantly inhibits IFN-β promoter activity, an effect that is reversed in the presence of the proteasomal inhibitor MG132. Specific targeting of Ro52 using short hairpin RNA rescues IRF3 degradation following polyI: C-stimulation of HEK293T cells, with a subsequent increase in IFN-β production. Additionally, shRNA targeting of murine Ro52 enhances the production of the IRF3-dependent chemokine RANTES following Sendai virus infection of murine fibroblasts. Collectively, this demonstrates a novel role for Ro52 in turning off and thus limiting IRF3-dependent type I IFN production by targeting the transcription factor for polyubiquitination and subsequent proteasomal degradation.
journals.aai.org